Role of Edge Superconducting States in Trapping of Multi-Quanta Vortices by Microholes. Application of the Bitter Decoration Technique
نویسندگان
چکیده
The Bitter decoration technique is used to study the trapping of single and multiple quanta vortices by a lattice of circular microholes. By keeping a thin superconducting layer (the bottom) inside each hole we are able to visualise the trapped vortices. From this we determine, for the first time, the filling factor FF, i.e. the number of vortices captured inside a hole. In all cases the sample is cooled at a constant field before making the decoration. Two qualitatively different states of the vortex crystal are observed." (i) In case when the interhole distance is much larger than the coherence length, the filling factor averaged over many identical holes ( < FF> ) is a stepwise function of the magnetic flux (o f the external field) through the hole, because each hole captures the same number of vortices. The density of fluxoids inside the openings is higher than in the uniform film, but much lower than it should be in the state of equilibrium. We claim that the number of trapped vortices is determined by the edge superconducting states which appear around each hole at the modified third critical field H~ > Hoe. Below He: such states produce a surface barrier of a new type. This barrier for the vortex entrance and exit is due to the strong increase of the order parameter near the hole edge. It keeps constant the number of captured vortices during the cooling at a fixed field. (ii) An increase of the hole density or of the hole radius initiates a sharp redistribution offIuxoids: all of them drop inside holes. This first order transition leads to a localization of all vortices and consequently to a qualitative change of the transport properties (TAFF in our case). In the resulting new state the filling factor is not any more the same for neighbouring holes and its averaged value is equal to the frustration of the hole network.
منابع مشابه
Direct observation of vortex shells and magic numbers in mesoscopic superconducting disks.
We have studied vortex configurations in mesoscopic superconducting disks using the Bitter decoration technique. For a broad range of vorticities L the circular geometry is found to lead to the formation of concentric shells of vortices. From images obtained on disks of different sizes in a range of magnetic fields we traced the evolution of vortex states and identified stable and metastable co...
متن کاملNucleation of vortices inside open and blind microholes.
The critical field of a thin superconducting film with a blind circular hole is found theoretically. It is shown that the value of the critical field is sensitive to the bottom thickness, but the orbital momentum, i.e., the number of vortices which nucleate inside the hole, is not sensitive. A simple boundary condition for a steplike thin film is derived and used for comparative numerical analy...
متن کاملProperties of skyrmions and multi-quanta vortices in chiral p-wave superconductors
Chiral p-wave superconducting state supports a rich spectrum of topological excitations different from those in conventional superconducting states. Besides domain walls separating different chiral states, chiral p-wave state supports both singular and coreless vortices also interpreted as skyrmions. Here, we present a numerical study of the energetic properties of isolated singular and coreles...
متن کاملPinning-induced formation of vortex clusters and giant vortices in mesoscopic superconducting disks.
Merged, or giant, multiquanta vortices (GVs) are known to appear in very small superconductors near the superconducting transition due to strong confinement of magnetic flux. Here we present evidence for a new, pinning-related, mechanism for vortex merger. Using Bitter decoration to visualize vortices in small Nb disks with varying degrees of disorder, we show that confinement in combination wi...
متن کاملAccess and Mobility Policy Control at the Network Edge
The fifth generation (5G) system architecture is defined as service-based and the core network functions are described as sets of services accessible through application programming interfaces (API). One of the components of 5G is Multi-access Edge Computing (MEC) which provides the open access to radio network functions through API. Using the mobile edge API third party analytics applications ...
متن کامل